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By analyzing the known nonlinear solution for an elastic uniform circular plate with 
fixed edges, in 1955 Berger [i] suggested that the second invariant of the stress tensor for 
the center of the surface does not have any significant effect on the amount of deflection 
and it is permissible to ignore it in expressions for plate deformation energy. Subsequent 
alternative development of starting relationships of the problem led to differential equa- 
tions, one of which is linear in relation to deflection. The elegant form of the equations, 
the possibility of applying to them known methods of solving linear boundary problems, has 
drawn the attention to many scientists, especially overseas, which is possible to judge from 
the review in [2] (see also [3-5]). 

i. We construct equations of the Berger type for multilayer anisotropic plates and use 
them in order to solve nonlinear statics problems. We consider a multilayer anisotropic 
plate of constant thickness h. The datum surface Z is referred to a set of curvilinear co- 
ordinates a i. It is noted that in this section all indices with the exception of k = i, 
2, ..., N (N is the number of layers) take the values 1 and 2. 

Displacements and deformations in the plate are determined by the equations [3] 

z 

u~ ~ ) = u i +  zO~+ g(z) ~ ,  u~ k ) = w ,  Oi=--V~,v,  g ( z )=  ~ /(o)(t)dt, 
o 

~(h) ~(h) ~j = eij + zx~j + g (z) ~)~j, ~i3 = / (o )  (z) ?~. e~ = (V~u~ + V~u~ + V~w-V~u,)]2, 

• = (v~O~ "-I- v~O~)/2, ~>~ = ( V ~  + V ~ ) / 2  

[f(0)(z) is an a priori prescribed function of transverse coordinate z characterizing the 
rule for distribution of transverse shears through the package thickness). 

Before starting to derive Berger type equations we turn attention to an important situ- 
ation. Berger himself and the overwhelming majority of his successors by caring little about 
substantiating the hypothesis depart from the principle of possible displacements and from 
where equilibrium equations are derived in relation to displacements. In this way conformity 
was not established between force and kinematic characteristics for the plate, which often 
led to an incorrect understanding of the operating features of a structure and errors in 
formulating boundary conditions. These contradictions may be avoided if a mixed alternative 
principle is used of the form in [6]. Functional J7 from [6] is presented in the form 

I (V~u~ + V~u~ + V~w.V~')]  ff . = f f ( w  - - 7 ~ 
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_ I V ~ ) ]  -fl (V~O~ + V~O~)] L~[ ,~- - - f (V~ + - -  __ M ~  [ •  - -  

- - )  - --Oo (7~3 *~) ] /a&zida  2 (p%--p~-)u~+( (.~-)p+-- 5(0)p_)O~+ (i.i) 

-]- [g (6(tr p~- - -  g (5(o)) p~]  ~]~ + (q+ - -  q-)w} ]/ra d(zldcz 2 --  

- -  ( T~4tv + Tvtut + M~Ov + MvtOt + Lvv~v + Lvt~t + Q~3tv) dst. 
F 

Here p+i, p_i, q+, q_ are surface loads; 6(0 ) and ~(N) are distances from surface E to outer 

surfaces E_, ~+; Tij, Qo i, Mij, Lij are specific forces and moments determined by equations 
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in [3]; Tvv*, ..., Lvt*, uv, .--, ~t are physical components of the corresponding tensors 
and vectors in a coordinate system st, sv, connected with boundary contour F; a is discrimi- 
nant for the metric tensor surface Z; W is speCific deformation energy for the plate: 

W = ( I /2 )  Aa~W~ + B~~215 + ~, cc,~Tvo~ + 

p ~  , + ( t /2 )  C ~ V ~ • 2 1 5  + F ~ ~ ~  + (1/2) G ~ c ~ ? ~  + ( I /2 )  ~ , ~ g ~ ,  

N 6(k) N 6(h) 

h:l 6(k_1)  k=i 6 ( - - I )  

N 6(k) N 6(~) 

= (--1) 

N 6(k) 

h=i 6 ( h _ l )  

N 6(h) 

h = l  6(k_1)  

N 6ih) 
G ~ "  = ~, b ~ V ~  ~ (z) dz, 

h = l  6 ( h _ l )  

= u(~) 1(o) 
h=l 6(k_l) 

[b(k)~$Tm are tangential stiffnesses of the k-th layer]. 

We introduce generalized deformations eij 
to them: 

( 1 . 2 )  

0 and generalized displacements ui~ relating 

o o o o o o 
e~j = e~i - -  z : •  - -  z ~ ,  u~ = u~ - -  zxO~ - -  z~r (z~ = c o n s t ) .  ( 1 . 3 )  

Then we refer specific moments to a certain surface standing from the original surface 
by distance zz ~ and generalized specific moments are referred to a surface standing at a 
distance of z2 ~ from the original surface: 

M~fl M ~i - -  z ~  , = = L - -  z ~ T "  . 

Similar transformations should also be carried out with contour moments Mvv*, M~t*, Lvv*, 

Lvt*. 

By substituting generalized deformations and displacements from (1.3) in (i.i) and con- 
sidering (1.2) and (1.4) we obtain 

= k- [,o0- (v. 0o § 
(i.5) 

:( ~r + 

- Oo ~ ( ~ =  - , ~ )  - ( ~ %  - pt) =i - [ ( ~ ( = )  - =~) p~ (~(o) - =~) p t ]  o ~ -  

~ O ~ O O~ , O~ O* O~ * - (T~,~  + T~,~, + M~0~ + M~,0, + L~r + L~,~, + Q ~ )  ~=~; 
1" 

(1.6) 

where Bo~87~, Co~Tw, Do~SXm, Fo~87~, Go~7~ are cited stiffnesses for the plate: 

B~o~? ~ = B=~W ' __ z~ o, C~o~v o = C ~ V  ~ __ z~ ~ D~o~ o' = D~'~v o __ 

Presence in expressions for specific deformation energy of the plate (1.6) of second 
and third terms markedly limits the region for application of the Berger hypothesis in multi- 
layer anisotropic plate theory since moments and generalized moments depend on elongations 
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and shears for the datum surface, and in equations for tangential forces terms are present 
taking account of the effect of parameters for the change in curvature and transverse shears. 

We simplify Eq. (1.6) by assuming that coefficients in cross terms equal zero: 

B~ ~w=O, D~ ~ve=0. (1.7) 
Equalities (1.7) may be treated as conditions for transforming calculation for a layered 
plate to a uniform plate, and they were first obtained in [7] for bimetallic structures. It 
is easy to be certain that in the general case of a multilayer anisotropic plate conditions 
for deriving (1.7) are identically only satisfied for a symmetrically assembled package of 
layers. For transversely isotropic plates (1.7) is also fulfilled for asymmetrical packages 
when Poisson's ratios for the layers are equal. Then by introducing the relative Poisson's 
ratio we obtain equations for parameters zi ~ from (1.3), (1.4): zz ~ = hc~3/2, z2 ~ = hcz2/2, 
where cz2 and czs are dimensionless stiffness parameters [3]. 

We use the Berger hypothesis by approximately presenting (1.6) in the form 

(1.8) 

The value 

T T ~ ^  0 I ~ = ~  c~ (1.9) 

corresponds to the first invariant of the deformation tensor for the central plane of an 
anisotropic plate and for uniform orthotropic plates introduced for example in [8]. Here 

U~8 are contravariant components of a second rank symmetrical tensor: U II = ~A I~I, U 22 = 

, :U~-~ ,  u ~  = ~ 2  + ~ 2 ~  

We find the variation of functional J7 from (1.5) taking account of (1.8) and (1.9), 

by submitting to variation uiO , ~i, w, eij~ , xij, ~ij, Yi3, Tij, MoiJ, LoiJ, Qo i: 

[ o ,  o ~ )1 [ ] - -  e,~--g(V~u~ + V~u~ + V~w.V~w 6T ~ -  •  (V~0~ + V~0~) 63!~o ~ -  

i - + + : + -  

- [v~v~MY-- V~ ( : ' % )  + (~(.~,)-- z~) v ~ _  -- (~(o)--~) V~p ~- + q+--~-] ~,,-- 
- [V~Ly-- Q~ + (g (6(~)) -- ~) p$ -- (g (~(o)) _~o) p~] ~,~} V-~ ~ 2  + 

�9 . �9 o o .  + r ~ - r ~ , ) ~ u ~ + ( r ~ , - r ~ , ) ~  +(M~,~--M,,,,)~O~+ J[F 
o o* o* [ O " $ t  

~176 . ]  } 

By substituting the equation obtained for 6J 7 in variation equation 6J 7 
deformation expressions 

o t (V~uj + V : ~  + ~ i ~ ' V / ~ ) ,  "~  = ~h. • = 

l 

= 0 we arrive at 

283 



elasticity relationships 

�9 i~ ~ i / a 6 . .  f,i.;c~?,o,. . 
(i.i0) 

equilibrium equations 

VaT ai = p~- - -  p~,  V~Va3Io ~ - -  V~ (T~Oa)  = q_ - -  q+ + 

+ (~(o)- ~) v~pt  - (~.,~)- ~i) v~%, v ~ o  ~ _ O~ = [g ( G ) -  o)]  ~!  - [g (~ ) )  ~] - -  p + ;  

n a t u r a l  b o u n d a r y  c o n d i t i o n s  

(l.li) 

( r ~  - TS)  ~.~ = o, ( r ~ , -  r: ,)  6.; = o, ( ~ G  - M~O ~o, = o, 

o o,  , o o ,  [ OM~. l 
( L v v - -  Lvv) 6 , v  = O, ( L ~ t - -  Lv,) 6~,, = O, k ost + " ~ V ~ M ~  - -  rvvov - -  ( 1 . 1 2 )  

I f  i n  ( 1 . 1 1 ) ,  ( 1 . 1 2 )  and  ( 1 . 3 ) ,  ( 1 . 4 )  we a s s u m e  z i ~  = O, t h e n  we o b t a i n  an e q u i l i b r i u m  
equation and boundary conditions for multilayer plate theory based on the generalized Timo- 
shenko hypothesis [3]. This not by accident. In fact, tangential forces TiJ from (i.i0) 
correspond to the Berger hypothesis adopted by substituting traditional forces in a multi- 
layer plate. It is also noted that (i.i0) and (i.ii) in the form written coincide with re- 
lationships and equations of the three-layer anisotropic plate theory of the Berger type [9]. 

2. The procedure suggested for studying geometrically nonlinear problems is particu- 
larly simple and effective for multilayer transversely isotropic plates and it has a con- 
siderable physical clarity compared with the generally accepted Berger approach. For rec- 
tangular transversely isotropic plates equilibrium Eq. (i.ii) may be written in the form 

Tl i ,1  -~ T i i , e  = O, L~ + L~ = Qo~,  

o " , o o 

~ ' 1 1 , 1 1  + 2M12,12 + ~'I22,22 -}- TllZV, ll -~- 2 T l d V ,  l~ + T22w,22 ~-  - -  q" 
(2.1) 

Starting from this point it is assumed that the datum surface of the plate is referred to 
a Cartesian coordinate system ~i, ~2, and Tij, Mij~ , Lij~ , Qoi are physical components of 

the corresponding tensors. Equilibrium Eqs. (2.1) in the form written coincide with equi- 
librium equations for three-layer transversely isotropic plates [i0]. The results are also 
similar for boundary conditions and therefore they are not given here. 

Equation (2.1) may be transformed if a method described in [3] is used. As a result 
we obtain differential equations concerning displacement functions X and shear functions 

1 Oh2 o~ 2 ( t  he - -  - ~ -  A )  A A x  - -  - -  q .  TA) A~= b--, 

t - -  ~r h ~ Eh ~ 

and an integrodifferential equation for determining Berger constants ~2 

( 2 . 2 )  

( 2 . 3 )  

b (/ 

6 = [([L*'1)2 -~ (U)'2)2] dG~I (~(~2' W = I - -  -~- A ~, 

0 0 

(2.4) 

where v is relative Poisson's ratio; E is averaged elasticity modulus; @, 6, q3 are dimen- 
sionless stiffness parameters [3]; a, b are rectangular plate dimensions. 

A virtue of differential Eqs. (2.2) and (2.3) is that they are linear and not connected 
with each other. In addition, (2.3) is a solution of the edge effect type. It makes it pos- 
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sible in studying certain special problems to assume approximately that ~ = 0, and thus to 
reduce the general order of set of differential Eqs. (2.2), (2.3) from eight to six. In 
form of writing Eqs. (2.2)-(2.4) agrees with equations constructed in [i0] for three-layer 
plates with a rigid transversely isotropic filler. This result is of considerable practical 
importance because it shows that in concept calculation of multilayer plates in no way dif- 
fers from calculation of three-layer plates. Therefore, results obtained for three-layer 
plates of finite deflection, e.g., in [i0], may be used directly in design calculations for 
multilayer plates. 

For the case of cylindrical bending of a hinged plate subject to the action of uniform 
load q the solution of the problem may be written in the form 

q [ O~chOl(a/2--a~) O~_chO,-,(a]2--~l) ~ 1 
% = a2D 0~_ (0~ --  0~) ch (01a/2) q- ~2',,~2 {0 21 - -  0,~) ch (02a/2). -2- r (a - -  ~j.) - -  

o~ o~], o~, = { ~ + ~~ ~ [(~ + ~h"~)2- 4~ } ~ / ~ ~  . 
(2.5) 

By taking (2.5) shear parameter ~ = = we arrive at the original solution of Bubnov [ii] 
first obtained for a uniform isotropic plate in 1902. 
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